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Abstract

The short periodic orbit approach is adapted for the quantum cat maps. The
main objective is to explain, in a simple abstract model, the most relevant
characteristics of this method which was originally developed for Hamiltonian
fluxes. In particular, we describe a semiclassical Hamiltonian formulation to
evaluate eigenphases and eigenstates of quantum cat maps. The main advantage
of this formulation is that each eigenstate is described in terms of a small
number, N/ ln N , of short periodic orbits, with N the dimension of the Hilbert
space. Moreover, matrix elements can be obtained semiclassically with high
accuracy in terms of a very small number, of the order of ln2 N , of homoclinic
and heteroclinic orbits. From the computational point of view, this approach
reduces the size of matrices used to the order N/ ln N .

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

Gutzwiller’s semiclassical trace formula [1] provides the energy spectrum of a classically
chaotic Hamiltonian system in terms of the periodic orbits (POs) of the classical system.
This formalism was shown to be very efficient for the evaluation of mean properties [2, 3].
Nevertheless, even though it was considerably improved by the use of resummation techniques
[4, 5], it suffers from a very serious limitation when a detailed description of properties of the
system is required: the number of used POs proliferates exponentially with the Heisenberg
time. In this way, the approach loses two common advantages of semiclassical techniques:
simplicity in the calculation and more important, simplicity in the interpretation of the results.

Based on numerical experiments in the Bunimovich stadium billiard [6], we have derived
a semiclassical theory of short POs [7], which was successfully verified for the first 25
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eigenstates of the stadium [8]. This formalism allows us to obtain all quantum information
of a chaotic Hamiltonian system in terms of a very small number of short POs. The essence
of the method consists of the construction of wavefunctions related to short unstable POs and
the evaluation of matrix elements between these wavefunctions. In 2001, we improved the
wavefunction construction by the inclusion of transverse excitations [9] and thereby reducing
the energy dispersion by the factor 1/ln(S/h̄), with S a typical action of the system transverse to
the flux, at the considered energy. We have called these optimal wavefunctions scar functions,
and from now on we will refer to them with the same name.

It is worth emphasizing that a scar function is not only related to a PO, but also to the
pieces of stable and unstable manifolds closer to the PO [10]; that is, those pieces of manifolds
which can be described in a simple way at semiclassical level. With this picture in mind we
were able to analyse the asymptotic behaviour of nondiagonal matrix elements between scar
functions [11], observing as a main result that they can be evaluated in terms of a very small
number of heteroclinic orbits.

The aim of this paper is to apply the short PO approach to the cat maps in order to show
clearly the power of the method. In these maps, the construction of scar functions is trivial,
and this fact simplifies the interpretation of the used approximations. On the other hand, as
we will employ a semiclassical Hamiltonian formulation for quantizing the map, the obtained
results are not exact, as it is for the standard semiclassical quantizations of cat maps. However,
this fact is not an obstacle, because the computed errors are much smaller than the typical
error found in semiclassical calculations of chaotic systems.

The paper is organized as follows. Section 2 is devoted to describe the used quantized cat
map and its associated classical hyperbolic Hamiltonian in the plane. Section 3 explains the
scar function construction for our quadratic hyperbolic Hamiltonian in the plane. In section 4,
we construct scar functions of POs on the torus and discuss its improvement by using
time reversal and spatial symmetry. In section 5, we develop a semiclassical Hamiltonian
formulation of the cat map and rewrite matrix elements between scar functions in a convenient
way for asymptotic approximations. Section 6 develops the semiclassical evaluation of matrix
elements as an asymptotic expansion in powers of h̄. Section 7 is devoted to verify in simple
cases, the obtained semiclassical expressions. In section 8, we compare the Hamiltonian
calculation of eigenvectors and eigenphases with the exact results. Section 9 is devoted to
final remarks and conclusions. We also include six appendices in order to clarify the derivation
of the used expressions.

2. The cat maps

The cat maps are the hyperbolic automorphisms of the unit 2-torus. They are completely
chaotic dynamical systems for which the torus is the phase space. A quantization procedure
for these maps was developed in [12], and we will employ the simplest cat map quantizable
by this procedure. It is characterized by the following quantum propagator in the position
representation:

Uq ′,q = (−i/N)1/2 exp[i2πN(q2 − qq ′ + q ′2)],

with q, q ′ = 0, 1/N, 2/N, . . . , (N −1)/N . The integer N represents the dimension of Hilbert
space, and is related to Planck’s constant by h̄ = 1/(2πN).4 Furthermore, the wavefunctions
are periodic with period 1, and can be non-zero only at rational positions with denominator N.

4 In general, we will use h̄ for expressions in the plane and N for expressions on the torus.
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Let {φμ} be the set of eigenfunctions of the propagator, with {αμ} the corresponding set
of eigenphases satisfying

N−1∑
k=0

U j

N
, k

N
φμ(k/N) = eiαμφμ(j/N), for j = 0, 1, . . . , N − 1. (1)

This set can be decomposed into two symmetry classes according to the following relations:
φμ(j/N) = φμ(1 − j/N) for even eigenfunctions, and φμ(j/N) = −φμ(1 − j/N) for odd
ones.

Our objective is to find this set of eigenfunctions and the corresponding eigenphases by
using the short PO approach. Now, in order to think about eigenenergies, Eμ, we compare the
relation Û t = exp(−iĤ t/h̄) (valid for autonomous Hamiltonian systems) with equation (1)
to provide the following definition:

Eμ ≡ −αμh̄

τ
, (2)

where τ is the time between consecutive steps of the map. Of course, we have the problem
that the spectrum of eigenenergies is periodic. However, such a problematic situation should
disappear if we use an energy window much smaller than 2πh̄/τ for the quantum mechanical
computation.

The classical mechanics of the system is given by the map that evolves the point (q, p)

on the torus (0 � q, p < 1) towards the point (q ′, p′) satisfying the following relations:

q ′ = 2q + p − m and p′ = 3q + 2p − n, (3)

with the integers m and n imposing the conditions 0 � q ′, p′ < 1. The corresponding action
is given by

R(q ′, q,m, n) = q2 − q(q ′ + m) + (q ′ + m)2 − nq ′, (4)

from which the map may be obtained using p = −∂R/∂q and p′ = ∂R/∂q ′. Moreover, if we
allocate an energy E to the motion, the reduced action results

S(q ′, q,m, n) = τE + R(q ′, q,m, n). (5)

This map corresponds to viewing stroboscopically at time intervals τ , the motion generated
by the quadratic Hamiltonian

H(q, p) = λ

2

[(p

α

)2
− (αq)2

]
, (6)

with both q and p taken modulo 1 at each observation. λ = ln(2 +
√

3)/τ is the Lyapunov
exponent of the map, and α = 31/4. This Hamiltonian describes, in the plane (q, p), a
hyperbolic point at the origin with stable and unstable manifolds given by the straight lines,
p = −α2q and p = α2q, respectively. These manifolds are characterized by the stable and
unstable vectors,

ξs = 1√
2

(
− 1

α
, α

)
and ξu = 1√

2

(
1

α
, α

)
,

normalized by the relation ξu ∧ ξs = 1. These vectors evolve in the plane without modifying
their directions, according to the simple rule

ξs(t) = e−λt ξs and ξu(t) = eλt ξu. (7)

We note that the previous relations are written by fixing the units of length and momentum
to the dimensions of the 2-torus. On the other hand, we do not fix the unit of time in order to
clearly show the derivation of a Hamiltonian formulation. Of course, the natural unit of time
is τ ; by using this, we should replace τ by 1 in all the expressions.
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3. The scar function of a hyperbolic point in the plane

In this section, we construct the scar function of the hyperbolic point specified by the classical
Hamiltonian of equation (6), with the quantum Hamiltonian,

Ĥ = λ

2

[
− h̄2

α2

d2

dq2
− (αq)2

]
.

Let ϕ(q, t) be the following wave packet:

ϕ(q, t) = 1

(πh̄)1/4
√

eiπ/4Q(t)
exp

[
i
q2

2h̄

P (t)

Q(t)

]
(8)

depending on the parameter t, where the complex numbers Q(t) and P(t) are the position and
momentum components of the complex vector:

(Q(t), P (t)) ≡ ξu(t) + iξs(t).

A straightforward calculation shows that ϕ(q, t) verifies the time-dependent Schrödinger
equation.

By replacing (7) in (8), one obtains

ϕ(q, t) =
√

α e− i
2 arctan[tanh(λt)]

[πh̄ cosh(2λt)]1/4
exp

{[
− 1

cosh(2λt)
+ i tanh(2λt)

]
(αq)2

2h̄

}
,

where we have selected the phase of
√

eiπ/4Q(t) in the range (−π/8, π/8) in order to obtain
a continuous function of t. From this relation, we inmediately note that the dispersion in q
increases exponentially with t:

σq(t) =
√

h̄ cosh(2λt)

2α2
. (9)

Moreover, the following relations can be verified5:∫ ∞

−∞
ϕ∗(q, t)ϕ(q, t) dq = 1,

∫ ∞

−∞
ϕ∗(q, t)Ĥϕ(q, t) dq = 0,

∫ ∞

−∞
ϕ∗(q, t)Ĥ 2ϕ(q, t) dq = (h̄λ)2/2,

and with them the energy dispersion of ϕ(q, t) results

σE = λh̄√
2
. (10)

We emphasize that this is a minimum value; that is, the energy dispersion of an arbitrary wave
packet is strictly greater than the previous value.

Then, with this optimal wave packet at hand, we define the scar function by the following
integral representation:

φ(q) ≡ K

∫ T

−T

cos

(
πt

2T

)
ϕ(q, t) dt, (11)

with K the positive real number that normalizes φ(q) to unity. As the imaginary part of ϕ(q, t)

is an odd function of t, φ(q) is real function of q. Moreover, as ϕ(q, t) is even with respect to

5 As ϕ(q, t) = exp[−(i/h̄)Ĥ t]ϕ(q, 0), it is sufficient to verify these relations for t = 0.
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q, φ(q) is also even; note that this property is independent of the used quadratic Hamiltonian.
Finally, the action of Ĥ on φ(q) defines the wavefunction:

h(q) ≡ Ĥφ(q). (12)

We have proved in [11] that φ(q) is the wavefunction with minimum energy dispersion
among all the constructions that use ϕ(q, t) for times |t | � T .6 This result is asymptotically
valid, and the leading order of the energy dispersion, as T → ∞, is given by

σE(T ) =
[∫ ∞

−∞
φ∗(q)Ĥ 2φ(q) dq

]1/2

	 πh̄

2T
. (13)

In appendix A, we develop an interpolation formula connecting the limiting cases T → 0 and
T → ∞ given by equations (10) and (13), respectively.

In order to estimate the area A over which the scar state is extended in phase space, we
use the following relation:

T = ln(A/h̄)

2λ
. (14)

For T = 0, the wave packet does not evolve, thus the state occupies an area equal to h̄. For
A = 1, the wave packet is able to evolve up to the border of the square representing the 2-torus
for the map, and the corresponding time is the so-called Ehrenfest time TE . Of course, it is
simple to evaluate the scar state for areas greater than 1, because the manifolds are straight
lines and we will do that in the numerical calculations. However, the manifolds of generic
chaotic systems are very complex objects, and then, the evaluation of scar states for times
greater than TE is extremely difficult; by the way, we will show that this operation is not very
useful.

We mention that our original scar function construction (see [9] or [11]) is a linear
combination of some eigenfunctions of the harmonic oscillator (λ/2)(p2/α2 + α2q2); those
eigenfunctions living inside an area A of the plane q–p around the origin. Moreover, the
coefficients of the combination are obtained by minimizing the energy dispersion. Even
though the original scar function has an energy dispersion smaller than φ(q) for finite values
of h̄, they have the same asymptotic behaviour given by equation (13); in [11], we provide an
extensive comparison of these two constructions. So, to simplify the mathematical content of
this paper, we use equation (11) as our definition of scar function of the considered hyperbolic
point. Nevertheless, it should be clear that it is possible to use our original definition in the
following section.

4. The scar function of periodic orbits on the torus

A wavefunction defined in the plane is projected on the torus by periodizing the function in
q and p. For this reason our starting point is the scar function φ(q) defined in the previous
section.

Let γ be a primitive PO of the map with n different points on the torus:

(q0, p0), (q1, p1), . . . , (qn−1, pn−1), (qn = q0, pn = p0).

Then, a scar function of γ is defined by the following simple expression (the meaning of this
expression is discussed in the following section):

φγ (q) ≡ 1√
n

n−1∑
j=0

eiSj /h̄ eipj (q−qj )/h̄φ(q − qj ), (15)

6 The parameter T used in equation (11) is 1/2λ times the parameter T used in [11].
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where Sj is the reduced action for going from q0 to qj . That is S0 = 0, and from equation (5)
one obtains

Sj = jτEγ +
j−1∑
k=0

R(qk+1, qk,mk, nk), for j � 1, (16)

where Eγ is the so-called Bohr–Sommerfeld (BS) energy of γ . There are n different BS
energies related to γ , and they are obtained from the BS quantization rule:7

Sn/h̄ = 2πm, with m integer. (17)

By replacing equation (16) in (17) it is possible to write Eγ , or just the corresponding BS
phase αγ ,8 explicitly as follows:

αγ,m ≡ −τEγ,m

h̄
= −2πm

n
+

1

nh̄

n−1∑
k=0

R(qk+1, qk,mk, nk) (mod 2π), (18)

for m = 0, 1, . . . , n − 1.
The projection of φγ (q) on the torus is obtained by making the function periodic in p,

which consists in taking rational positions with denominator N, and also in q by summing on
integer translations. This yields

φγ (k/N) ≡
∞∑

l=−∞
φγ (k/N − l), for k = 0, 1, . . . , N − 1, (19)

where the sum can be reduced to three terms (l = −1, 0 and 1) for times T < TE . However,
in the general case, it is necessary to include all the terms satisfying |l| � 1 + eλ(T −TE).9 This
means that even though scar functions of cat maps are described by very simple expressions,
the computation for times greater than the Ehrenfest time results involved (the number of
relevant terms in (19) increases exponentially with T).

It is possible to improve the scar function construction by using time reversal and spatial
symmetry. Time reversal leads to real scar functions, and spatial symmetry projects them into
one of the two symmetry classes mentioned in section 2. The used recipes, exactly equivalent to
those applied to Hamiltonian fluxes, are briefly described below; a deeper account is provided
in appendix F.

Let γ ∗ and γ ′ be the POs connected to γ by spatial symmetry and time reversal,
respectively; that is, γ ∗ contains the points (q∗

j = 1 − qj , p
∗
j = 1 − pj )(mod 1), and γ ′

the points (q ′
j = qj ′ , p′

j = 1 − pj ′)(mod 1), with j ′ = n − j (mod n). If γ has no symmetries
at all, it is necessary to use a linear combination of four scar functions related to the set of POs
{γ, γ ∗, γ ′, γ ∗′} in order to obtain real functions within defined symmetry classes; however,
this case is only required at extremely large values of N (� 104 for the cat map considered in
this paper). On the other hand, if γ is time reversal invariant (γ = γ ′), a linear combination
of the scar functions related to the set {γ, γ ∗} (which are real functions up to a global phase)
provides the required symmetry class; section 8 shows an example. Equivalently, if γ = γ ∗′,
scar functions corresponding to the set {γ, γ ∗} are, after adding a global phase, complex
conjugated with the real part being even and the imaginary part being odd (in section 8 we
provide an example)10. Finally, when the PO simultaneously satisfies time reversal and spatial

7 The Bohr–Sommerfeld rule selects those energies for which the accumulated phase along the periodic orbit is a
multiple of 2π .
8 αγ is defined in accordance with equation (2).
9 This relation is derived from (9) and the definition of TE is given in (14).
10 For the cat map used in this paper, the γ = γ ∗ 
= γ ′ case, which is not explicitly considered, only occurs for n � 8;
see appendix F.
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symmetry, the associated scar function is a real (up to a global phase) function, even or odd
depending on the BS phase; see section 7.

We finish this section by noting that the meaning of the length of a PO, when symmetries
are present, is different in our approach from that used by Gutzwiller. In Gutzwiller’s theory,
the length of a PO is related to its stability eλτn, and so is directly given by n. In our approach,
the length of a PO is related to the complexity of the corresponding scar function and so, we
have to sum the periods of all the POs used in the construction. For instance, if γ has no
symmetries, the corresponding length is 4n according to our viewpoint.

5. A Hamiltonian formulation for the cat maps

The main idea behind the construction of wavefunctions of unstable POs is the decomposition
of the motion in the vicinity of the central PO into one of periodic nature and other of
hyperbolic character. In [7], we obtained explicitly such decomposition for two degrees of
freedom autonomous Hamiltonian systems. Furthermore, such decomposition can be extended
to more degrees of freedom in an almost straightforward way; this is the content of Floquet’s
theorem [13].

The motion of periodic nature is related to the topological structure of the orbits in the
vicinity of the central PO; in other words, it provides the evolution of the stable and unstable
directions as we move along the PO. In particular, such directions are fixed for the cat maps,
and then the evolution of orbits in the vicinity of the PO is simply described by the motion of
hyperbolic character.

In order to develop these ideas, let us assume that the classical structure of the cat maps
is derived from a Hamiltonian flux, with the 2-torus being a particular Poincaré surface of
section. Then, let us describe the motion in the vicinity of γ in terms of local coordinates.
The variable x parameterizes γ , for instance, x can be the time that now is continuous, and px

is the corresponding momentum. The variables in the transverse direction to γ are given by
y and py ; we assume that y = 0 on γ , and so ẏ is also zero on γ . Then, the motion in the
neighbourhood of γ is described by the following local Hamiltonian11:

Hγ (x, px, y, py) = H||(x, px) + H(y, py),

with H the hyperbolic Hamiltonian of equation (6); so, py = α2ẏ/λ is equal to zero on γ .
H||(x, px) is an unknown one-dimensional Hamiltonian along γ , from which we only know
the corresponding action between points on the Poincaré surface of section. Note that in the
neighbourhood of (qj , pj ), the local variables are

x = jτ, y = q − qj and py = p − pj .

Let us define a closed path in the neighbourhood of γ by a translation of γ in the transverse
direction; this means to change the transverse variables from zero to given values y and py ,
these values being the label for the path. A closed path is invariant by the action of H||(x, px),
while it evolves into another closed path by the action of H(y, py); the evolution is dictated
by the evolution of the label (y, py). Then, the intersection of a closed path with the surface
of section consists of n points with coordinates (q = y + qj , p = py + pj ) (mod 1) for
j = 0, . . . , n − 1, and these intersecting points evolve continuously on the torus under the
action of H(y, py).

In this way, we have established a Hamiltonian formulation on the torus; of course, it
only works for closed paths. Nevertheless, as the scar function construction of equation (15)
is supported by a bunch of closed paths, we can also employ this Hamiltonian formulation at

11 See equation (15) of [9] for an explicit expression of Hγ in the case of Hamiltonian fluxes.
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quantum level. In order to clarify this point, we note that a scar function consists of the local
plane–wave approximation, eiS(x)/h̄,12 along the bunch of closed paths with energy Eγ , and
the translation of φ(q) to each point on γ in the transverse direction. Specifically, the scar
function in local coordinates is given by13

φγ (x, y) = 1√
n

eiS(x)/h̄φ(y),

and with this, the action of Ĥγ is simply taken into account by Ĥ|| eiS(x)/h̄ = Eγ eiS(x)/h̄ and
Ĥφ(y) = h(y), with h(y) defined in equation (12). This yields

Ĥγ φγ (x, y) = Eγ φγ (x, y) +
1√
n

eiS(x)/h̄h(y),

which in terms of the global coordinate q on the surface of section results

Ĥγ φγ (q) = Eγ φγ (q) + hγ (q), (20)

with

hγ (q) = 1√
n

n−1∑
j=0

eiSj /h̄ eipj (q−qj )/h̄h(q − qj ).

The wavefunction obtained in equation (20) is defined in the real line. So, by periodizing
this function in p and q, we get a Hamiltonian formulation for the quantum cat maps14:

Ĥcatφγ (k/N) ≡ Eγ φγ (k/N) + hγ (k/N), for k = 0, 1, . . . , N − 1. (21)

This equation contains one of the main ideas behind the short PO approach; the action of the
Hamiltonian of the system, Ĥcat, acting on a scar function of γ is taken into account through
its local version.

Matrix elements between scar states are given by

〈δ|γ 〉 = 1

N

N−1∑
k=0

φ
∗
δ (k/N)φγ (k/N), (22)

〈δ|Ĥcat|γ 〉 = 1

N

N−1∑
k=0

1

2
[φ

∗
δ (k/N)Ĥcatφγ (k/N) + Ĥcatφ

∗
δ (k/N)φγ (k/N)], (23)

〈δ|Ĥ 2
cat|γ 〉 = 1

N

N−1∑
k=0

Ĥcatφ
∗
δ (k/N)Ĥcatφγ (k/N), (24)

with δ a primitive periodic orbit of the map15. In equation (23), we have symmetrized the
Hamiltonian matrix element to guarantee Hermiticity.

The previous expressions can be written in a convenient way in order to apply asymptotic
expansions. By using equations (B.1), (B.2) and (21), we rewrite them as follows:

〈δ|γ 〉 =
∞∑

j,l=−∞

∫ ∞

−∞
φ∗

δ (q) eijq/h̄φγ (q − l) dq, (25)

12 Actually, the local plane–wave approximation is given by eiS(x)/h̄/
√

ẋ, so we are assuming that ẋ is constant
along γ .
13 A deeper explanation of this construction and the meaning of closed path can be found in the appendix B of [11].
14 Even though the notation is clear, we remark that hγ (k/N) = ∑∞

l=−∞ hγ (k/N − l).
15 The inclusion of the factor 1/N in the definition of matrix elements guarantees the normalization of the scar
functions in leading order; that is, 〈γ |γ 〉 → 1 for N → ∞.
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〈δ|Ĥcat − (Eδ + Eγ )/2|γ 〉 =
∞∑

j,l=−∞

∫ ∞

−∞
eijq/h̄[φ∗

δ (q)hγ (q − l) + h∗
δ (q)φγ (q − l)]

dq

2
, (26)

〈δ|(Ĥcat − Eδ)(Ĥcat − Eγ )|γ 〉 =
∞∑

j,l=−∞

∫ ∞

−∞
h∗

δ (q)eijq/h̄hγ (q − l) dq, (27)

where the relevant terms are those satisfying |j |/√3, |l| � 1 + eλ(T −TE).16

After replacing in equation (25) the expressions given for φγ and φδ , in accordance with
(15), the overlap results

〈δ|γ 〉 = 1√
nδnγ

∑
j,l

nδ−1∑
m=0

nγ −1∑
m′=0

ei(Sm′ −Sm)/h̄

×
∫ ∞

−∞
e−ipm(q−qm)/h̄φ∗(q − qm) eijq/h̄ eipm′ (q−l−qm′ )/h̄φ(q − l − qm′) dq.

Moreover, rearranging factors and renaming q − qm with q, one obtains

〈δ|γ 〉 = 1√
nδnγ

∑
j,l

nδ−1∑
m=0

nγ −1∑
m′=0

ei(Sm′ +jqm′ −Sm−pmq0−p0q0/2)/h̄I0, (28)

where

I0 =
∫ ∞

−∞
φ∗(q) eip0(q−q0/2)/h̄φ(q − q0) dq, (29)

with

q0 = qm′ + l − qm and p0 = pm′ + j − pm. (30)

The integral I0 is real because its integrand at q = q0/2 + δq is the complex conjugate of the
integrand at q = q0/2 − δq (remember that φ is even). In fact, we have extracted the phase
(Sm′ + jqm′ − Sm − pmq0 − p0q0/2)/h̄ of the integral in order to satisfy such a condition. The
meaning of this phase is discussed in [11] (in particular, see equation (A.6) in [11]).

In the same way, matrix elements provided by equations (26) and (27) can be obtained
from the right-hand side of equation (28) by replacing I0 with I1 and I2, respectively, where

I1 =
∫ ∞

−∞
eip0(q−q0/2)/h̄[φ∗(q)h(q − q0) + h∗(q)φ(q − q0)]

dq

2
,

and

I2 =
∫ ∞

−∞
h∗(q) eip0(q−q0/2)/h̄h(q − q0) dq.

By using the same argument applied to I0, it is easy to verify that these integrals are real
numbers.

6. Semiclassical evaluation of matrix elements

In this section, we evaluate the integrals I0, I1 and I2 defined in the last section, as an expansion
in powers of h̄. To do so, we first apply the symplectic transformation,

u = 1√
2
(αq + p/α) s = 1√

2
(−αq + p/α), (31)

16 These estimates are derived from the dispersion in p and q, for the wave packet ϕ(q, t = T ).
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with α = 31/4, where u and s are variables leaving along the manifold directions ξu and ξs ,
respectively. The reason for this transformation is that φ(q) is a rapidly oscillating function
while the u-representation of the scar state, φu(u), is a slowly varying function far from the
origin (see figure 2 of [11]). In order to have some intuition, we mention that an elementary
semiclassical estimate of these functions gives us φ(q) ∼ cos(α2q2/2h̄ − π/4)/

√|q| and
φu(u) ∼ 1/

√|u|, for |q|, |u| > 2πh̄.
The Hamiltonian of equation (6) is transformed into λus and the corresponding

scar function, φu(u), was extensively studied in [11]. Specifically, we can write (see
equation (38)17 of [11])

φu(u) = K

∫ T

−T

cos

(
πt

2T

)
ϕu(u, t) dt, (32)

with

ϕu(u, t) = 1

(πh̄)1/4
exp

[
−u2 e−2λt

2h̄
− λt

2

]
,

and K the same factor of equation (11). Moreover, the action of the quantum Hamiltonian,
−iλh̄(1/2 + u d/du), on φu(u) directly gives us the u-representation of h(q):

hu(u) = −iλh̄
[
φu(u)/2 + uφ(1)

u (u)
]
. (33)

In terms of φu(u), the integral of equation (29) takes the form18

I0 =
∫ ∞

−∞
φ∗

u(u) eis0(u−u0/2)/h̄φu(u − u0) du, (34)

where (u0, s0) is obtained from (q0, p0) (see (30)) through the transformation (31). To prove
the validity of equation (34), it is necessary to verify the following relation between overlaps
of wave packets:∫ ∞

−∞
ϕ∗

u(u, t) eis0(u−u0/2)/h̄ϕu(u − u0, t
′) du =

∫ ∞

−∞
ϕ∗(q, t) eip0(q−q0/2)/h̄ϕ(q − q0, t

′) dq

for arbitrary times, t and t ′. Actually, it is sufficient to verify the previous relation for t = t ′ = 0,
because ϕ(q, t) and ϕu(u, t) satisfy the corresponding time dependent Schrödinger equations.

In order to understand the semiclassical evaluation of equation (34), let us describe
figure 1, where full lines indicate pieces of unstable manifolds, and dashed lines correspond
to pieces of stable ones. The cross at the origin is related to the scar function φu(u), and the
other cross at (u0, s0) represents the scar function,

φ′
u(u) ≡ eis0(u−u0/2)/h̄φu(u − u0); (35)

in this way, I0 is the overlap 〈φ|φ′〉. Furthermore, there are two intersections between the
crosses, one at the heteroclinic point (u0, 0) and the other at the heteroclinic point (0, s0); as
we will see below, the main contribution to the overlap is concentrated in the neighbourhood
of each of these points.

By appropriate transformations of equation (34), it is possible to capture with high
accuracy the contribution to I0 of each heteroclinic point by the method of stationary phase.
For instance, as the point (0, s0) is the intersection of the stable manifold starting at the origin
with the unstable manifold starting at (u0, s0), we can write I0 = ∫ 〈φ|s〉〈s|u〉〈u|φ′〉ds du (the

17 In such equation, the time is measure in units of λ−1, and T is 2λ times the parameter T that we use in this paper.
18 Even though φu(u) is a real function, we keep the symbol (*) in order to describe the general recipe used for the
evaluation of the integral, also applicable to the integrals I1 and I2.
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0 0

s

u

(u  ,s  )

Figure 1. Crosses represent scar functions where solid lines indicate pieces of unstable manifolds
and dashed lines indicate pieces of stable ones. The intersections between crosses take place at the
heteroclinic points (u0, 0) and (0, s0). The area of the rectangle defined by the two crosses is the
so-called heteroclinic area in [11].

s-representation of the scar state, 〈s|φ〉 = φs(s), is computed in equation (C.1)). Then, the
overlap takes the form

I0 = e−is0u0/2h̄

√
2πh̄

∫ ∞

−∞
φ∗

s (s)φu(u − u0) e−i(s−s0)u/h̄ ds du, (36)

where the point of stationary phase at (u = 0, s = s0) is clearly shown in the integrand.
Moreover, taking into account that φu(u − u0) and φs(s) are slowly varying functions in
the vicinity of u = 0 and s = s0,19 respectively, we can use the complex conjugate of
equation (D.1), to obtain the (0, s0) contribution to the overlap as an expansion in powers
of h̄:

I0(0, s0) =
√

2πh̄ e−is0u0/2h̄
∑
n�0

(−ih̄)n

n!
φ(n)∗

s (s0)φ
(n)
u (−u0).

We emphasize that the neighbourhood of the point (u = u0, s = 0) provides a significant
contribution to I0, which is not captured by I0(0, s0). The reason is that even though the phase is
not stationary at (u = u0, s = 0) in equation (36), the integrand is ill behaved in such a region.
Nevertheless, the contribution to I0 provided by the heteroclinic point (u0, 0) can be evaluated
by Fourier transforming φ′

u(u); that is, using the relation I0 = ∫ 〈φ|u〉〈u|s〉〈s|φ′〉 ds du. In
this case, however, before applying (D.1) it is necessary to separate the rapidly oscillating
contribution of 〈s|φ′〉 = φ′

s(s) according to equation (C.2). Then, the overlap results

I0 = eis0u0/2h̄

√
2πh̄

∫ ∞

−∞
φ∗

u(u)φs(s − s0) eis(u−u0)/h̄ ds du,

and from this, the contribution I0(u0, 0) is derived with the assistance of (D.1).

19 We mean that these functions are practically constants when the argument changes by h̄. These conditions are
clearly satisfied when |u0|, |s0| >

√
h̄, and this is the generic situation for the short PO approach.

11
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After a few calculations one finds I0(u0, 0) = I ∗
0 (0, s0). So, the sum of these two

contributions gives us20

I0 	 2
√

2πh̄
∑
n�0

h̄n

n!
cos

( s0u0

2h̄
− n

π

2

)
φ(n)

u (s0)φ
(n)
u (u0). (37)

It is worth mentioning that this equation is an asymptotic expansion, and so it does not converge
for any fixed value of h̄. The error of the asymptotic expansion decreases as the number of
included terms increases up to a minimum error for a given number n∗ of terms, but then,
the inclusion of more terms makes the approximation worse. In appendix E, we provide an
estimate for n∗ and for the relative error of the approximation.

The semiclassical calculation of I1 and I2 follows the same steps. With the assistance
of the Fourier transforms given by equations (C.3) and (C.4), the final expansions for these
integrals result:

I1 	 −i
√

2πh̄
∑
n�0

h̄n

n!
sin

( s0u0

2h̄
− n

π

2

) [
h(n)

u (s0)φ
(n)
u (u0) + h(n)

u (u0)φ
(n)
u (s0)

]
, (38)

and

I2 	 2
√

2πh̄
∑
n�0

h̄n

n!
cos

( s0u0

2h̄
− n

π

2

)
h(n)

u (s0)h
(n)
u (u0). (39)

The method of stationary phase does not work when q0 = 0 or p0 = 0. So, in the case
of diagonal matrix elements (for δ and γ the same PO) when m = m′ and l = j = 0 (see
equation (30)) , it is necessary to evaluate directly the integrals. Nevertheless, the calculation
is trivial for the first two integrals, while appendix A discusses the other:

I0 = 1, I1 = 0 and I2 = σ 2
E. (40)

7. The simplest scar functions

In order to clarify the relations developed up to here, let us consider periodic orbits of period
one. They are γ1 with fixed point (q0 = q1 = 0, p0 = p1 = 0), and γ2 with fixed point
(q0 = q1 = 1/2, p0 = p1 = 1/2). Then, from equations (3) and (4) it results m = n = 0
for γ1 with R(0, 0, 0, 0) = 0, while m = n/2 = 1 for γ2 with R(1/2, 1/2, 1, 2) = 3/4.
Later, BS energies and phases are given, according to (18), by αγ1 ≡ −τEγ1/h̄ = 0 and
αγ2 ≡ −τEγ2/h̄ = 3/4h̄ = 3πN/2. Moreover, scar functions take the simple form (see
equation (15)),

φγ1(q) = φ(q) and φγ2(q) = eiπN(q−1/2)φ(q − 1/2);
of course, hγ1(q) = h(q) and hγ2(q) = eiπN(q−1/2)h(q − 1/2). By projecting these functions
on the torus (see equation (19)), one obtains that φγ1

(k/N) is always a real even function,
while φγ2

(k/N) is real even for even N and pure imaginary odd for odd N (by including the
global phase appearing in (F.2), φγ2

(k/N) is always a real function).
To have some idea of the phase space structure of these scar functions, figure 2 displays

the Husimi representation of φγ2
, for N = 99.21 The left panel, corresponding to T = TE (or

equivalently to A = 1; see equation (14)), has a structure similar to the scar function of a
hyperbolic point in the plane (where homoclinic contributions do not exist). On the other hand,
the right panel which corresponds to T = 1.5TE (or A ∼ 25), clearly shows the influence of
homoclinic contributions.
20 We use the relation φ

(n)
u (−u) = (−1)nφ

(n)
u (u), which is valid because φu(u) is even.

21 The Husimi of φγ2
at (q1, p1) is the square modulus of its overlap with the projection on the torus of the coherent

state exp[−(q − q1)
2/2h̄ + ip1q/h̄].
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Figure 2. Contour lines in logarithmic scale of the Husimi representation of φγ2
, for N = 99. The

left panel corresponds to T = TE , and the right panel corresponds to T = 1.5TE .

 0.6
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 0.4

 400 200 0

N

σα

Figure 3. Phase dispersion, σα ≡ τσE/h̄, of φγ2
as a function of N. The numerical computation

(dashed line) according to equation (41) is compared with a prediction (solid line) given by equation
(A.3). The prediction does not include homoclinic contributions.

Now, we will use these scar functions to verify semiclassical predictions; in the following,
we use T = TE . Figure 3 compares a numerical calculation of the phase dispersion,
σα ≡ τσE/h̄, by using (22), (23) and (24):

σ 2
E(γ ) = 〈γ |Ĥ 2

cat|γ 〉
〈γ |γ 〉 −

(
〈γ |Ĥcat|γ 〉

〈γ |γ 〉

)2

, (41)

with the prediction given by (A.3). As it can be seen, the prediction just describes the mean
behaviour, because it only takes into account the term l = j = 0 of diagonal matrix elements
according to (40), but the inclusion of more terms (the homoclinic contributions) certainly
improves the result.

In order to verify the accuracy of the semiclassical expressions as a function of the number
of included terms, let us consider the overlap 〈γ1|γ2〉. For this couple of POs, q0 = 1/2 + l

and p0 = 1/2 + j , and equation (28) reduces to

〈γ1|γ2〉 =
∑
j,l

eiπN[j−(1/2+j)(1/2+l)]I
(l,j)

0 , (42)
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Figure 4. Error in the semiclassical evaluation of the overlap according to equation (44), as the
number of heteroclinic contributions increases. The curves from top to bottom correspond to
B = 0, B = I

(0,0)
0 , B = I

(0,0)
0 + I

(0,1)
0 and B = I

(0,0)
0 + I

(0,1)
0 + I

(1,0)
0 + I

(1,1)
0 + I

(0,2)
0 + I

(1,2)
0 ,

respectively.

where the dependence of I0 on (l, j) is explicitly shown; each term of the sum consists of two
heteroclinic contributions like those in figure 1. Moreover, it is easy to verify for nonnegative
integers (l, j) the following relations22:

u
(l,j)

0 = s
(−l−1,j)

0 = −s
(l,−j−1)

0 = −u
(−l−1,−j−1)

0 ,

and

s
(l,j)

0 = u
(−l−1,j)

0 = −u
(l,−j−1)

0 = −s
(−l−1,−j−1)

0 .

Applying these relations to equation (37), and using the fact that the derivatives φ(n)
u have

defined parity, one finds

I
(l,j)

0 = I
(−l−1,j)

0 = I
(l,−j−1)

0 = I
(−l−1,−j−1)

0 .

So, we can rearrange the terms of the sum providing the overlap into groups of four terms
(with the same value of I0) labelled by the nonnegative integers (l, j). Moreover, it is easy to
verify that the sum of the four coefficients in (42), eiπN[j−(1/2+j)(1/2+l)], for each group is equal
to 4(−1)N/4 for N a multiple of 4, and zero otherwise. Then, the overlap results

〈γ1|γ2〉 = 4(−1)N/4
∑
j,l�0

I
(l,j)

0 , (43)

for N a multiple of 4, and zero otherwise.
In what follows we compare the numerical computation of the overlap given by (22) with

the previous equation, where the terms I
(l,j)

0 are evaluated using (37). Figure 4 displays the
expression,

N × abs[〈γ1|γ2〉 − 4(−1)N/4B], (44)

for N a multiple of 4, where B is given by 0, I
(0,0)
0 , I

(0,0)
0 + I

(0,1)
0 and I

(0,0)
0 + I

(0,1)
0 + I

(1,0)
0 +

I
(1,1)
0 + I

(0,2)
0 + I

(1,2)
0 , for the curves from top to bottom, respectively. The top curve shows

that the overlap is bounded by 1/N in the considered range. The second curve demonstrate
that the term 4(−1)N/4I

(0,0)
0 provides 90% of the overlap, and equivalently, the third curve

22 From equations (31) and (30) it results u
(l,j)

0 = [1+2j+α2(1+2l)]/(α23/2) and s
(l,j)

0 = [1+2j−α2(1+2l)]/(α23/2),
where the dependence of u0 and s0 on (l, j) is explicitly shown.
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Figure 5. 4N times the absolute value of each term of equation (37) used for the evaluation of
I

(0,0)
0 ; upper curve corresponds to n = 0 and bottom curve to n = 4. Each curve is bounded from

above by the relation 0.9(3.5/N)n.

shows that 4(−1)N/4
(
I

(0,0)
0 +I

(0,1)
0

)
represents 99% of the overlap. The bottom curve indicates

that the first six terms of (43) describe 99.99% of the overlap; however, for small values of N
(specifically for N = 4, 8 and 12) we note some problems related to the asymptotic nature of
equation (37). As discussed in section 6, the asymptotic expansion does not converge for any
fixed value of N. In particular, for N = 4, the minimum error is obtain for n∗ = 4 (this value
is well predicted by (E.1)). Furthermore, this minimum error takes a relative value of around
1%, which is well predicted by (E.2).

Now, let us analyse the term I
(0,0)
0 , which provides the main contribution to the overlap.

Figure 5 plots 4N times the absolute value of each of the first five terms of (37); the upper
curve corresponds to n = 0 and bottom curve to n = 4. Each curve is bounded from above
by the relation 0.9(3.5/N)n, where the factor 3.5/N is understood according to [11], in terms
of the heteroclinic area defined in figure 1 as follows:

3.5

N
∼ 4

√
3πh̄ = πh̄∣∣u(0,0)

0 s
(0,0)
0

∣∣ .
This means that the asymptotic expansion guarantees an estimate of the overlap when the
following relation is satisfied:

πh̄ � abs(heteroclinic area). (45)

The semiclassical evaluation of the other matrix elements (see equations (23) and (24))
presents exactly the same characteristics as in the case of the overlap. So, we conclude that
there are two types of errors in the semiclassical evaluation of matrix elements. One is given
by the truncation in the number of terms included in equation (28); that is, the number of
homoclinic (for diagonal elements) or heteroclinic (for nondiagonal elements) contributions
included in the calculation. As it is suggested in figure 4, this error decays exponentially
with the number of included terms. The other error is related to the fact that the method of
stationary phase only works when the heteroclinic point, according to equation (45), is not
simultaneously close to the two POs. We notice that homoclinic areas of the order of h̄ can
only be found in long POs (of the order of the Heisenberg time), so the second error does not
occur in the short PO approach for diagonal matrix elements.
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8. The structure of eigenfunctions in terms of scar functions for N = 25

The objectives of this section are to show, in a simple case, the power of the short PO
approach to describe the structure of eigenfunctions, and the high accuracy obtained with the
Hamiltonian formulation developed in section 5.

We consider the case N = 25, and in order to uniformly cover the phase space let us
employ a set of 25 points at rational positions (q = i/5, p = j/5), with 0 � i, j < 5.
This set contains eight primitive periodic orbits of period 3, and the PO γ1 discussed in
section 7. We label with δ1, δ2, δ3 and δ4 the POs starting at (1/5, 0), (2/5, 0), (0, 1/5) and
(0, 2/5), respectively. Moreover, following the notation of section 4, δ∗

1 , δ
∗
2 , δ

∗
3 and δ∗

4 are the
POs connected to the previous ones by spatial symmetry.

A straightforward calculation, following the recipe of section 4, shows that the eight POs
of period 3 have the same set of BS phases given by −2π/3, 0 and 2π/3; in this section
we use the interval (−π, π ] to describe eigenphases. We can then evaluate, for instance, the
corresponding scar functions for the BS phase α = 0. Using equation (15), it results that

φδ1(q) = 1√
3
[φ(q − 1/5) + 2 cos(5πq) ei25qπφ(q − 2/5)],

φδ2(q) = 1√
3
[φ(q − 2/5) + 2 cos(15πq) ei25qπφ(q − 4/5)],

φδ3(q) = 1√
3
{ei10qπφ(q) + ei20qπ [φ(q − 1/5) + φ(q − 4/5)]},

φδ4(q) = 1√
3
{ei20qπφ(q) + ei40qπ [φ(q − 2/5) + φ(q − 3/5)]},

and by applying equation (19) they are projected on the torus. Moreover, the following
relations can directly be verified (see equations (F.5) and (F.9)):

φδj
(k/N) = φδ∗

j
(1 − k/N) for j = 1, 2 and k = 0, . . . , N − 1,

with these functions being real functions (because the corresponding POs satisfy δ = δ′), and

φδj
(k/N) = φ

∗
δ∗
j
(k/N) for j = 3, 4 and k = 0, . . . , N − 1,

with the real part of these functions being even and the imaginary part odd (because the
corresponding POs satisfy δ = δ∗′).

Then, for α = 0 we obtain four real scar functions with even (+) or odd (−) symmetry as
follows:

φ
(±)

δj
(k/N) = η√

2
[φδj

(k/N) ± φδ∗
j
(k/N)] for j = 1, 2, 3, 4, (46)

with η = −i for (−) and j = 3, 4, and η = 1 otherwise.
In this way, we have a basis of 25 real scar functions with defined symmetry. There are

twelve odd scar functions divided into three groups, each group associated with one of the
three BS phases (−2π/3, 0 and 2π/3); these groups have four functions each one (the odd
functions of equation (46) being one of the groups). Moreover, there are three groups of
even functions, each one also associated to one of the three BS phases; in this case, however,
the group with α = 0 contains five functions, the four given by (46) plus the scar function
φγ1

(k/N) of section 7.
Now, these functions being localized in the eigenphase spectrum, we can consider each of

the groups mentioned before separately; note that the phase dispersion of each scar function is
∼ 0.5 (for T = TE) according to the estimate (A.3), while the difference between BS phases
is 2π/3 ∼ 2.1. In other words, our basis decomposes the Hamiltonian matrix into three blocks
for each symmetry class; even though this decomposition is not exact as it is for different
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Table 1. Numerical comparison between four exact odd eigenvectors of the propagator for N = 25,
and the eigenvectors obtained from diagonalizing a 4 × 4 Hamiltonian matrix. Second column
shows for T = TE ∼ 2τ the percentage eigenphase error in units of the mean level spacing.
Third column displays the square modulus of the overlap between the exact eigenvector and the
Hamiltonian one. Fourth column provides the dispersion of the Hamiltonian eigenvector in units
of the mean level spacing. The last three columns correspond to T = 2TE ∼ 4τ .

Eigenphase Er% |Ov|2 σ Er% |Ov|2 σ

−0.366 52 0.4 0.9998 0.064 0.02 0.999 96 0.018
0.052 36 1.2 0.998 0.19 0.13 0.999 97 0.012
0.471 24 10 0.976 0.61 0.55 0.9983 0.16
0.890 12 57 0.86 1.41 0.53 0.9993 0.15

symmetry classes, the accuracy of the calculation is remarkable. As a representative example,
let us consider a set of four odd scar functions with α = 0 given in equation (46). In this case,
phases are measured in the interval (−π, π ], although the interval (α − π, α + π ] should be
considered for arbitrary α in order to move away the point of discontinuity; remember that in
a Hamiltonian formulation the spectrum is not periodic. Then, matrix elements are evaluated
with equations (22), (23) and (24), or just the corresponding semiclassical expressions.

By solving a 4×4 generalized eigenvalue problem for the Hamiltonian matrix H (because
the basis is not orthogonal),

Hψ = EOψ,

with O the overlap matrix, odd eigenvectors very close to four eigenvectors of the propagator
are obtained; see table 1. Moreover, the evaluation of the dispersion of ψ (see equation (41))
gives us an estimate of the error in the calculation. In this respect, we would like to present
the following heuristic expressions, which are very satisfactory in order to estimate the error:

1 − |Ov|2 ∼ σ 2

16
and Er � σ 3/2

4
,

where Ov is the overlap between ψ and the exact eigenvector, and Er is the absolute value
of the eigenvalue difference; the quantities Er and σ are measured in units of the mean level
spacing. Note that the previous relations provide an estimate of the error in the calculation
without requiring a comparison with the exact computation.

Finally, we emphasize that the diagonalization of the other blocks provides exactly the
same level of accuracy.

9. Final remarks and conclusions

We have successfully applied the short periodic orbit approach for the quantum cat maps.
In particular, within a Hamiltonian formulation a new perspective was presented for the
semiclassical evaluation of eigenfunctions and eigenphases.

Being manifold directions fixed for the cat maps, scar functions are simply constructed
with φ(q) (see equation (11)). Moreover, asymptotic expansions for the evaluation of matrix
elements are given in terms of φu(u) (see equation (32)), the u-representation of φ(q).
With respect to equation (20), where quantum dynamics is introduced by the action of the
Hamiltonian on scar functions, we emphasize that it is the general recipe used by the short
periodic orbit approach.

Section 7 demonstrates that matrix elements between fixed points are semiclassically
given by a finite number of heteroclinic contributions. So, for POs with periods of the order
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of ln N , the number of heteroclinic contributions (or homoclinic contributions in the case of
diagonal matrix elements) is of the order of ln2 N .

The spirit of the short periodic orbit approach is to find the best semiclassical basis, and to
provide asymptotic expressions for the corresponding matrix elements. Section 8 presents an
example showing the advantages of employing a basis of scar functions in place of the position
basis, while [14] analyses such advantages in the semiclassical limit. Of course, it should be
clear that by increasing T, the number of required scar functions decreases and eventually for
T of the order of the Heisenberg time, each scar function should be an eigenfunction; however,
the approach would be as cumbersome as Gutzwiller’s theory. In contrast, the philosophy
behind the short PO approach is to use the semiclassical dynamics whenever it is reasonable
to do so, namely, up to times of the order of the Ehrenfest time, and afterward to work from a
quantum point of view.

Appendix A

In this appendix, we derive an interpolation formula for the phase dispersion, σα(T ), between
the behaviour for T ∼ 0 and T → ∞, where

σα(T ) ≡ τσE(T )

h̄
= τλ

σE(T )

λh̄
,

with τλ = ln(2 +
√

3) according to section 2.
We have derived in [11] the asymptotic behaviour of the energy dispersion as follows:

σE(T )

λh̄
= π/2

x + z
+ O(x−3), (A.1)

with x ≡ λT , and

z =
(∫ ∞

0

y dy√
cosh(y)

)
÷

(∫ ∞

0

2 dy√
cosh(y)

)
	 1.060 78.

On the other hand, it is not difficult to show that the Taylor expansion of σE(T ) around T = 0
is even. So, according to equation (10) it results23

σE(T )

λh̄
= 1 + O(x2)√

2
. (A.2)

Then, we propose as a first step the interpolation formula,

f (x) = π/2

x + z + α/(1 + x/α)
,

with α = π/
√

2 − z 	 1.160 66, which satisfies equations (A.1) and (A.2) simultaneously.
A numerical calculation shows that the relative error of f (x) is smaller than 2.5%, while it

takes its greatest value in the intermediate range as expected. Finally, the heuristic expression,

σE(T )

λh̄
	 f (x) ÷ [1 + 0.0268 e−(ln x−1)2

], (A.3)

has a relative error smaller than 0.1% for x > 1, and smaller than 0.4% for x < 1.

23 In fact, a straightforward but tedious calculation shows that σE(T )/(λh̄) = [1 − (3/2 − 12/π2)x2 + O(x4)]/
√

2.
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Appendix B

Let ψ(q) and φ(q) be wavefunctions defined on the real line, with ψ(k/N) and φ(k/N)

the corresponding projections on the torus as described in equation (19). We will show the
following relation:

1

N

N−1∑
k=0

ψ
∗
(k/N)φ(k/N) =

∫ ∞

−∞
ψ∗(q)P̂ φ(q) dq, (B.1)

with

P̂ φ(q) =
∞∑

j,l=−∞
ei2πNjqφ(q − l). (B.2)

Note that ei2πNjqφ(q − l) is a translation of φ(q), by l along the q direction and by j along
the p one. So, equation (B.1) means that the overlap on the torus can be evaluated over the
plane if one of the wavefunctions is replaced by the sum of all its integer translations.

By using equation (B.2) and expressing
∫ ∞
−∞ = ∑∞

n=−∞
∫ n+1
n

, one obtains

∫ ∞

−∞
ψ∗(q)P̂ φ(q) dq =

∞∑
n=−∞

∫ n+1

n

ψ∗(q)

⎡
⎣ ∞∑

j=−∞
ei2πNjq

∞∑
l=−∞

φ(q − l)

⎤
⎦ dq.

Then, by the change of variables q ′ = q + n and noting that
∑∞

l=−∞ φ(q − l) is periodic with
period unity, we have

∫ ∞

−∞
ψ∗(q)P̂ φ(q) dq =

∫ 1

0

[ ∞∑
n=−∞

ψ∗(q ′ − n)

] ⎡
⎣ ∞∑

j=−∞
ei2πNjq ′

⎤
⎦

[ ∞∑
l=−∞

φ(q ′ − l)

]
dq ′.

Finally, the application of the Poisson summation formula,
∞∑

j=−∞
ei2πNjq ′ = 1

N

∞∑
j=−∞

δ(q ′ − j/N),

inmediately provides (B.1).

Appendix C

In this appendix, the Fourier transform of some relevant wavefunctions are evaluated. Starting
with φu(u) (equation (32)), we have

φs(s) ≡ 1√
2πh̄

∫ ∞

−∞
φu(u) e−isu/h̄ du

= K√
2

∫ T

−T

cos

(
πt

2T

) {
e−λt/2

(πh̄)3/4

∫ ∞

−∞
exp

[
−u2 e−2λt

2h̄
− isu

h̄

]
du

}
dt

= K

∫ T

−T

cos

(
πt

2T

)
1

(πh̄)1/4
exp

[
− s2 e2λt

2h̄
+

λt

2

]
dt

= φu(s), (C.1)

where the last step is reached after the change of variable, t → −t . On the other hand, with
the rename u−u0 → u, the Fourier transform of φ′

u(u) (see equation (35)) inmediately results

φ′
s(s) = e−i(s−s0/2)u0/h̄φs(s − s0). (C.2)
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The Fourier transform of hu(u) (see equation (33)) is simply derived by applying
iλh̄(1/2 + s d/ds) (the s-representation of Ĥ ) to φs(s). It results

hs(s) = −hu(s). (C.3)

And finally, the Fourier transform of h′
u(u) = eis0(u−u0/2)hu(u − u0) is

h′
s(s) = e−i(s−s0/2)u0/h̄hs(s − s0). (C.4)

Appendix D

In this appendix, we prove the following h̄ expansion:∫
f (u)g(s) eisu/h̄ ds du = 2πh̄

∑
n�0

(ih̄)n

n!
f (n)(0)g(n)(0), (D.1)

where f and g are smooth functions.
By writing f and g in terms of Taylor expansions around zero, the integral results∫

f (u)g(s) eisu/h̄ ds du =
∑

n,m�0

1

n!m!
f (n)(0)g(m)(0)

∫
unsmeisu/h̄ ds du.

So, to prove (D.1) we need to prove∫
unsm eisu/h̄ ds du = 2πh̄(ih̄)nn!δn,m. (D.2)

We differentiate n times the identity,∫
eisu/h̄ du = 2πh̄δ(s),

to obtain ∫
un eisu/h̄ du = 2πh̄(−ih̄)nδ(n)(s).

Then, multiplying the last equation by sm and taking the integral with respect to s, one finds∫
unsmeisu/h̄ ds du = 2πh̄(−ih̄)n

∫
smδ(n)(s) ds.

Finally, using the identity
∫

smδ(n)(s) ds = (−1)nn!δn,m (obtained by integration by parts),
equation (D.2) is proved.

Appendix E

In this appendix, let us estimate the optimal number of terms, n∗, included in the asymptotic
expansion (37) in order to minimize the error; moreover, we will provide an estimate of the
relative error. We guess that the obtained expressions can also be employed for the asymptotic
expansions given in equations (38) and (39).

Let us to approximate the scar function by φu(u) = 1/
√|u|. In such a case, the integral

of equation (34) takes the value [11]

I0 = π(J0(α) − Y0(α)),
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with α = |u0s0|/2h̄, and where u0s0 is the heteroclinic area appearing in figure 1; J0 and
Y0 are the Bessel and Neumann functions of zero order, respectively. On the other hand, the
asymptotic expansion of equation (37) takes the explicit form

I0 	 2
√

π/α
∑
n�0

B(n) cos(α − nπ/2),

with

B(n) = [(2n − 1)!!]2

n!23nαn
;

that is, B(0) = 1, B(1) = 1/8α,B(2) = 9/128α2, and so on.
A numerical computation shows us that the error of the expansion has the following sharp

upper bound:

error(n1) =
∣∣∣∣∣I0 − 2

√
π/α

n1∑
n=0

B(n) cos(α − nπ/2)

∣∣∣∣∣ � 2
√

π/αB(n1 + 1).

Then, the minimum error is obtained for B(n∗ + 1) being a minimum; that is, for

n∗ ∼ 2α = |u0s0|/h̄. (E.1)

Finally, as the amplitude of I0 is well reproduced by 2
√

π/α (without including the
oscillatory factor), the relative error results

relative error(n1) � B(n1 + 1). (E.2)

Appendix F

In this appendix, we provide some recipes in order to obtain real scar functions within a defined
symmetry class. We use the notation of section 4, and by convention γ = γ ′ means that they
are the same PO up to a shift of the initial point.

F.1. The γ = γ ′ case

Let us consider a PO γ which is invariant by time reversal. The corresponding scar function,
given by equations (15) and (19), is real up to a global phase; our objective is to obtain such a
phase. Specifically, we have to find the real number ϕ such that

√
n eiϕφγ (k/N) =

∞∑
l=−∞

n−1∑
j=0

eiϕ+i2πN[Sj +pj (k/N−qj −l)]φ(k/N − qj − l) (F.1)

is real.
The cancellation of the imaginary part in (F.1) is not the consequence of a collective

contribution of many terms. In contrast, each term characterized by (qj + l, pj ) plus the
corresponding time reversal term (qj + l, (1 − pj )(mod 1))

24 should be real if an appropriate
global phase is selected. So, let us consider the term (q0, p0), where S0 = 0 (see section 4).
For p0 = 0 or p0 = 1/2, there is only one term given by

exp[iϕ + i2πNp0(k/N − q0)]φ(k/N − q0), (F.2)

24 We keep the operation (mod 1) on the p variable, because each term of (F.1) is periodic in p.
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and it is real for ϕ = 0 (when p0 = 0) or ϕ = πNq0 (when p0 = 1/2). On the other hand, for
p0 
= 0 and p0 
= 1/2, the sum of the terms characterized by (q0, p0) and (q0, 1 − p0) results

2 exp[iϕ + iπN(S + k/N − q0)]φ(k/N − q0) cos[2πN(p0 − 1/2)(k/N − q0) − πNS],

(F.3)

and it is real for ϕ = πN(q0 − S), with S the reduced action for going from (q0, p0) to
(q0, 1 − p0).

F.2. The γ = γ ′ 
= γ ∗ case

By including global phases, real scar functions of γ and γ ∗ are given (γ ∗ is also time reversal);
see appendix F.1. Then, linear combinations of these scar functions provide real functions
within defined symmetry classes. Our objective is to find those linear combinations.

In order to obtain a relation between the scar functions, let us compare the term
(q0, p0) (plus its time reversal one) of φγ , with the corresponding term by spatial symmetry,
(q∗

0 , p∗
0) = (1−q0, 1−p0) (mod 1), of φγ ∗ . For p0 = 1/2 it results p∗

0 = 1/2, so these terms
are given from (F.2) by

eiπN(k/N)φ(k/N − q0), for φγ (k/N),

and

eiπN(k/N)φ(k/N − 1 + q0) = (−1)N eiπN(1−k/N)φ(1 − k/N − q0), for φγ ∗(k/N),

where the even parity of φ was used. So, the following relation is derived for p0 = 1/2:

φγ ∗(k/N) = (−1)Nφγ (1 − k/N). (F.4)

Working in the same way for p0 = 0, we obtain

φγ ∗(k/N) = φγ (1 − k/N). (F.5)

Moreover, using equation (F.3) for the p0 
= 0 and p0 
= 1/2 cases, relation (F.4) is derived
again.

Finally, from equations (F.4) and (F.5), even (+) real scar functions and odd (−) ones are
given by

φ
(±)

γ (k/N) = 1√
2
[φγ (k/N) ± (−1)Nφγ ∗(k/N)], for p0 
= 0, (F.6)

and

φ
(±)

γ (k/N) = 1√
2
[φγ (k/N) ± φγ ∗(k/N)], for p0 = 0. (F.7)

F.3. The γ = γ ∗′ 
= γ ∗ case

By including appropriate global phases, scar functions of γ and γ ∗ have even real part and odd
imaginary part. Furthermore, linear combinations of them provide real scar functions within
defined symmetry classes.

Our starting point is equation (F.1), and we look for ϕ such that equation (F.1) takes a
real value at qk ≡ k/N = 0. As in the previous subsections we reduce the analysis to couples
of terms; in this case, (qj + l, pj ) and (−qj − l, pj ).25 Then, by using the initial point of γ ,
(q0, p0), plus the corresponding term (−q0, p0), one obtains, for k = 0,

eiϕφ(q0), for q0 = 0

25 The existence of these couples of terms is guaranteed by the symmetry of γ .
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and

2 exp[i(ϕ + πNS)]φ(q0) cos[πN(2p0q0 + S)] otherwise,

where S is the reduced action for going from (q0, p0) to (1 − q0, p0) (mod 1). From these
relations it results

ϕ = −πNS, (F.8)

with S = S0 = 0 for q0 = 0 or q0 = 1/2.
Now, by comparing the scar functions of γ and γ ∗, both of them with the corresponding

global phase discussed before, one finds

φγ ∗(k/N) = ei(ϕ∗−ϕ+2πNq0)φ
∗
γ (k/N), (F.9)

with ϕ∗ the global phase of γ ∗.26 The phase ϕ∗ − ϕ + 2πNq0 is an integer multiple of π ; in
particular, it is equal to 2πNq0, for q0 = 0 or q0 = 1/2. Then, even (+) real scar functions
and odd (−) real ones are given by

φ
(+)

γ (k/N) = 1√
2

[φγ (k/N) + ei(ϕ∗−ϕ+2πNq0)φγ ∗(k/N)], (F.10)

and

φ
(−)

γ (k/N) = −i√
2

[φγ (k/N) − ei(ϕ∗−ϕ+2πNq0)φγ ∗(k/N)]. (F.11)

F.4. The γ = γ ′ = γ ∗ case

Let φγ (k/N) be real by the inclusion of the global phase ϕ proposed in appendix F.1. As
a consequence of the full symmetry of the PO, this scar function is not only real, but also
belongs to a defined symmetry class. The objective is to provide a criterion in order to know
whether the function is even (+) or odd (−).

In this case, related to the term (q0, p0) there are three more connected by time reversal
(q0, 1−p0), spatial symmetry (1−q0, 1−p0) and both symmetries (1−q0, p0). Actually, we
can identify this situation with that appearing in appendix F.2 as follows. The terms, (q0, p0)

and (q0, 1 − p0), belong to the real scar function of γ , and the other two terms to the real
scar function of γ ∗. Of course, in this case we cannot select the relative phase between scar
functions, because γ and γ ∗ are the same PO; in contrast, this phase is fixed by the dynamics.
By computing such a phase, we obtain the following relation:

φγ (k/N) = ei2(ϕ−ϕ′)φγ (1 − k/N),

with ϕ appearing in (F.2) or (F.3), and ϕ′ given by (F.8). As the phase 2(ϕ − ϕ′) is an integer
multiple of π , the parity of 2(ϕ − ϕ′)/π gives us the parity of the scar function.

F.5. Summarizing

Equations (F.6), (F.7), (F.10) and (F.11) provide real scar functions within a defined symmetry
class for all BS energies (or phases), while appendix F.4 shows that the parity of the scar
function depends on the BS energy for fully symmetric POs.

Neither the γ = γ ∗ 
= γ ′ case nor the situation without symmetries was discussed because
they are only required for N � 104. In order to illustrate this fact, table F1 displays the number
of POs with a defined set of symmetries, as a function of the period. Now, taking into account
that the length of a PO (see section 4) is n times the number indicated in each column with the
symbol (×), the shortest length of a PO in column D or E results 16.
26 ϕ∗ = −πNS∗, with S∗ the reduced action for going from (q∗

0 , p∗
0) = (1−q0, 1−p0) (mod 1) to ((1−q0)

∗, p∗
0) =

(q0, 1 − p0) (mod 1).
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Table F1. Number of primitive periodic orbits with a defined set of symmetries, as a function of
the period, n. Column A corresponds to γ = γ ′ = γ ∗, B to γ = γ ′ 
= γ ∗, C to γ = γ ∗′ 
= γ ∗,
D to γ = γ ∗ 
= γ ′, and column E is the case without symmetries. The symbol (×) indicates the
number of POs used for the construction of real scar functions within a defined symmetry class.

n A (×1) B (×2) C (×2) D (×2) E (×4)

1 2 0 0 0 0
2 3 2 0 0 0
3 0 8 8 0 0
4 3 18 12 0 12
5 0 36 36 0 72
6 8 82 54 0 296
7 0 140 140 0 1160
8 18 346 242 8 4068

References

[1] Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer)
[2] Berry M V 1985 Proc. R. Soc. A 400 229
[3] Bogomolny E B 1988 Physica D 31 169
[4] Voros A 1988 J. Phys. A: Math. Gen. 21 685
[5] Berry M V and Keating J P 1990 J. Phys. A: Math. Gen. 23 4839
[6] Vergini E G and Wisniacki D A 1998 Phys. Rev. E 58 R5225
[7] Vergini E G 2000 J. Phys. A: Math. Gen. 33 4709
[8] Vergini E G and Carlo G G 2000 J. Phys. A: Math. Gen. 33 4717
[9] Vergini E G and Carlo G G 2001 J. Phys. A: Math. Gen. 34 4525

[10] Rivas A M F 2007 J. Phys. A: Math. Theor. 40 11057
[11] Vergini E G and Schneider D 2005 J. Phys. A: Math. Gen. 38 587
[12] Hannay J H and Berry M V 1980 Physica D 1 267
[13] Yakubovich V A and Starzhinskii V M 1975 Linear Differential Equations with Periodic Coefficients (New

York: Wiley)
[14] Vergini E G 2004 J. Phys. A: Math. Gen. 37 6507

24

http://dx.doi.org/10.1098/rspa.1985.0078
http://dx.doi.org/10.1016/0167-2789(88)90075-9
http://dx.doi.org/10.1088/0305-4470/21/3/023
http://dx.doi.org/10.1088/0305-4470/23/21/024
http://dx.doi.org/10.1103/PhysRevE.58.R5225
http://dx.doi.org/10.1088/0305-4470/33/25/311
http://dx.doi.org/10.1088/0305-4470/33/25/312
http://dx.doi.org/10.1088/0305-4470/34/21/308
http://dx.doi.org/10.1088/1751-8113/40/36/006
http://dx.doi.org/10.1088/0305-4470/38/3/005
http://dx.doi.org/10.1016/0167-2789(80)90026-3
http://dx.doi.org/10.1088/0305-4470/37/25/006

	1. Introduction
	2. The cat maps
	3. The scar function of a hyperbolic point in the plane
	4. The scar function of periodic orbits on the torus
	5. A Hamiltonian formulation for the cat maps
	6. Semiclassical evaluation of matrix elements
	7. The simplest scar functions
	8. The structure
	9. Final remarks and conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	The
	The gamma
	The
	The
	F.5. Summarizing

	References

